
www.manaraa.com

1

A Designer’s Benchmark for Active Database
Management Systems: 007 Meets the BEAST

Andreas Geppert, Stella Gatziu, Klaus R. Dittrich
Institut für Informatik, Universität Zürich1

Abstract: A benchmark for active database management systems is described. We
are particularly interested in performance tests that help to identify performant and
inefficient components. Active functionality that is relevant with respect to perfor-
mance is identified, and a series of tests is designed that measure the efficiency of
the performance-critical components. Results obtained from running the benchmark
for a concrete system are presented.

Keywords: active database systems, benchmarks, object-oriented database systems

1 Intr oduction

Active database management systems (ADBMSs) [e.g., 2, 9] have recently found great
interest as a topic of database research, and restricted ADBMS-functionality is already
offered by some products [e.g., 19]. An ADBMS implements “reactive behavior” since
it is able to detect situations in the database and beyond and to perform corresponding
actions specified by the user. Applications using reactive behavior are freed from per-
forming “polling” in order to detect interesting situations. ADBMSs release such ap-
plications from encoding (possibly redundantly) situation detection and reactions.

As for any system, ADBMSs should implement their functionalityefficiently. In
fact, the evolution of ADBMSs is currently in a state where performance arguments
play a crucial role, both from an application as well as from a system point of view:
• ADBMS researchers have developed different techniques for tasks of an ADBMS

such as composite event detection [e.g., 11, 15], and it is thus interesting to com-
pare these approaches with respect to performance.

• Dif ferent architectural approaches have been developed and need to be compared.
For instance, the layered architecture for ADBMSs is often claimed to be less effi-
cient than an integrated ADBMS [3].

• Authors have claimed that an ADBMS outperforms polling in applications [8],
which has still to be proven by appropriate measurements.

Nevertheless, figures describing the performance of ADBMSs are not yet available.
Moreover, it is so far still unclear what the relevantperformance measures of an
ADBMS might be, and an approach how to methodically measure the (in)efficiency of
ADBMSs has not yet been proposed.

The objective of this paper is to describe a benchmark for (object-oriented)
ADBMSs. Such a benchmark would be useful for at least three purposes:
• potential users can run it to compare the performance of multiple ADBMSs,

1. Authors’ address: Institut für Informatik, Universität Zürich, Winterthurerstr. 190, CH-8057
Zurich, Switzerland. Fax: +41-1-363 0035, Email: {geppert | gatziu | dittrich}@ifi.unizh.ch

In T. Sellis (ed.): Proc. 2nd Workshop on
Rules in Databases (RIDS), Athens,
Greece, September 1995. Lecture Notes in
Computer Science, Springer 1995.

www.manaraa.com

2

• ADBMS designers can run it to identify performance weaknesses of their system in
comparison to others, and

• it can be used to compare the performance of an ADBMS with that of a passive
DBMS, where the active behavior is encoded manually in the applications.

The BEAST2 benchmark focuses on the second point, i.e., our intention is that of de-
signers that want to assess their system. BEAST tests theactive functionality of
DBMSs, since appropriate benchmarks for passive DBMSs have already been devel-
oped [e.g., 4, 5, 14]. Furthermore, we concentrate onobject-oriented ADBMSs, since
—although we focus on the active part— the underlying data model influences
ADBMS performance. Even passive object-oriented and relational systems are intend-
ed for different application domains. Thus, one type of system would be at a disadvan-
tage when BEAST is used to compare relational and object-oriented ADBMSs.

BEAST considers relevant aspects of an ADBMS that need particularly efficient
implementation:
• event detection,
• rule management, especially rule retrieval, and
• rule execution.
For each component, we define a group of tests that serve to measure its performance.
We have used these tests to measure the performance of the ADBMS SAMOS [10].
Further ADBMSs will be tested in the near future.

The remainder of this paper is organized as follows. The next section gives a short
introduction of ADBMSs, as far as necessary to comprehend the benchmark. Section 3
describes the benchmark, and section 4 presents benchmark results for SAMOS. Sec-
tion 5 concludes the paper.

2 Active Database Management Systems

In order to make the benchmark better understandable, we give a short introduction of
ADBMSs. An ADBMS is a DBMS that in addition to its regular features supports the
specification and implementation of reactive behavior. Most ADBMSs support event-
condition-action rules (ECA-rules) for specifying reactive behavior. An event is an im-
plicitly or explicitly defined point in time and specifies when the rule has to be execut-
ed. Events can besimple (e.g., data item updates, message sending, transaction begin
and commit, time events, abstract events3, etc.) orcomposite (e.g., sequence, disjunc-
tion, negation, repeated occurrence, etc.). Current systems support rather different
kinds of events. The condition is either a boolean function or a database query. If the
condition evaluates to true (or returns a non-empty result), the action is executed. An
action is typically written in the data manipulation language (DML) of the ADBMS,
and can include the sending of messages in the case of object-oriented ADBMSs.

The execution model of an ADBMS specifies how rules are actually executed. It
determines how condition evaluations and action executions are realized in terms of
the transaction model. Thecoupling mode of a rule specifies when the condition or ac-

2. BEnchmark for Active database SysTems

3. Abstract events (or external events) are events that are not detected by the ADBMS, but that
have to be signalled explicitly by the application or the user.

www.manaraa.com

3

tion parts of a rule are executed with respect to the transaction that triggered the event.
Popular coupling modes areimmediate (directly after the event occurred),deferred (at
the end of the triggering transaction, but before commit), ordecoupled (in a separate,
independent transaction). In this paper, we assume that the coupling modes for condi-
tions relate condition evaluation to the triggering event, and that the coupling mode for
actions relate action execution to condition evaluation. Finally, the execution model
also defines how to process multiple rules that are all triggered by the same event. One
possibility is to let the user specify (partial) orders, e.g., by means ofrule priorities.

3 BEAST: A Benchmark for ADBMSs

In this section, we first identify relevant requirements and design decisions and then
describe the BEAST benchmark for ADBMSs. We use the steps proposed in [16] as a
reference model of how to proceed in benchmark design.

1. Definition of goals and the tested system.For any performance measurement
the goals must be defined beforehand. The goal of BEAST is to measure the execution
time of the services offered by an ADBMS. We currently assume a single-user
ADBMS.

2. Definition of services. There is only one tested service: active behavior. For this
service, BEAST proposes a collection oftests, each of which focuses on a specific sub-
task of active behavior. The selection of goals and services should be fair, i.e., it should
not favor specific systems. BEAST tests the features that are common to most current
ADBMSs, and does not stress special features that are available only for a few sys-
tems. The proposed tests are described in detail in section 3.1.

3. Selection of metrics. The performance measure we have chosen for BEAST is
response time. Since BEAST has no access to internal interfaces of a tested ADBMS,
we cannot precisely measure the performance of active behavior subtasks. Thus,
BEAST tests invoke active behavior, which always performs several phases such as
rule execution. Response time is then defined as the time interval that starts directly
before event occurrences and ends directly after rule execution (i.e., when the control
returns to the application)4.

4. Selection of factors.Factors are parameters that influence performance. Typical
factors for passive DBMS are buffer size, database size, etc. Below we identify addi-
tional factors for ADBMS performance measurement (e.g., number of defined rules).

5. Workload definition. Workload definition is a prime task in developing a
benchmark. In BEAST, the workload is defined such that basic ADBMS functionality
can be tested. Note that BEAST does not propose a typical application, since (1) the
possible application domains are rather different and (2) knowledge on how to use
ADBMSs for real life applications is still evolving. BEAST does not propose a typical
application and test its performance, but determines relevant functionalities and their
performance.

4. Exceptions to this definition are necessary for coupling modes other than immediate (see be-
low).

www.manaraa.com

4

3.1 Benchmark Design

BEAST is based on the 007 benchmark [4]. It uses the schema of 007 as well as the
corresponding databases (i.e., programs to create and fill databases). One reason for re-
using parts of 007 is to easily obtain a schema and database. Moreover, for a given ob-
ject-oriented ADBMS, BEAST and 007 together allow to measure the performance of
the active and the passive parts of a system, respectively.

BEAST considers three components where performance is crucial:
• event detection,
• rule management, and
• rule execution.
We have selected these components since they implement the three phases that com-
prise active behavior (see Fig. 1). They are thus contained in most ADBMS-architec-
tures [3, 6, 13, 17].

After an event occurs, it must bedetected, i.e., ADBMS components must realize
(or be notified) that the event has happened. At the end of the event detection phase,
the event issignalled5. The second phase (rule management) starts as soon as the event
has been signalled and determines whether (and which) rules must be executed. Inter-
nal information must be consulted that links event descriptions with rule definitions. In
the simplest case (theimmediate coupling mode), rule management is directly fol-
lowed by the rule execution phase (starting at t3). In this phase, the triggered rules are
executed. Each of the three phases is relevant with respect to performance.

Event detection is realized by the components that recognize the occurrence of spe-
cific events of interest. Two subtasks of event detection affect performance: detection
of primitive and of composite events. In general, we expect that performance is better
when the set of signalled primitive events can be small (i.e., only events that have rules
attached or that contribute in composite events are actually signalled). Second, com-
posite event detection can be realized in several ways that may have different perfor-
mance characteristics.

Rule management also affects the performance of an ADBMS. Rule management
refers to the storage and retrieval of rules and to the modification of the rulebase. After
a primitive event has been signalled, the ADBMS determines whether it is used in
ECA-rules and/or whether it participates in a composite event. Since information on
rules must be retrieved after the signalling of a triggering event, efficient identification
and retrieval of corresponding rules is crucial for ADBMS performance.

5. In general the precise point in time when an event occurred is not known. In BEAST tests,
however, we enforce event occurrence and thus know this point in time.

eventoccurrence

event detection

event signalling

rule management rule execution

t1 t2 t3 t4

Figure 1. Phases of Active Behavior

rules retrieved rules executed

www.manaraa.com

5

Rule execution refers to the identification of condition and action parts that have to
be executed after event occurrences as well as the execution of these parts. In particu-
lar, it is interesting how efficiently the various coupling modes are implemented and
how efficiently multiple rules triggered by the same event can be executed.

BEAST tests each component with a series of tests. The result of running BEAST
is therefore a collection of figures instead of a single figure for each ADBMS. Note
that we cannot test the performance of each component directly, due to lacking access
to internal interfaces of an ADBMS. Thus, most BEAST tests specify one or more
rules that are triggered when executing the test, i.e., the test actually causes the event
occurrence. In order to stress performance of single phases, we keep all other phases as
small as possible. For instance, a rule testing event detection performance simply de-
fines the condition to befalse, such that condition evaluation is cheap and the action
is not executed.

We elaborate on each group of tests subsequently. Tested functionality is described,
and possible interpretations are given. The rule schema can be found in Appendix A.
Note that the tests are not always enumerated consecutively, since some of the ones de-
scribed in [12] have been omitted in this paper.

Tests for Event Detection
For event detection tests, BEAST focuses on the time it takes to detect an event. Both,
the detection of primitive and composite events are tested.

Tests for Primitive Event Detection: BEAST contains five tests for primitive detection:
1. detection of value modification (ED-01),
2. detection of message sending (ED-02),
3. detection of transaction events (ED-03),
4. detection of aset of different primitive events (ED-04),
We illustrate the execution of tests with the test ED-02. The first operation of this test
is to record the actual time. The next operation causes the event in question to occur. In
this case, a message is sent. Note that in this way we know the point in time of event
occurrence. The ADBMS subsequently detects the event, determines attached rules,
and executes them. It then returns control to the test program. Finally, the test program
again records the time and computes the required CPU time.

The first three tests measure detection of single events. The corresponding rules for
all tests have a false condition and an empty action in order to restrict the measured
time to event detection, as far as possible. Coupling modes for action and condition
parts areimmediate. Another possible kind of primitive event would betime events,
but technically no meaningful way for measuring their detection exists.

The test ED-04 runs a transaction that raises multiple abstract events and measures
the time needed for this transaction to execute. Directly afterwards, the same transac-
tion is executed again. Information about each raised event is required and thus must
be retrieved twice. Buffering of event information can decrease the time needed for the
second event occurrence and rule retrieval. Thus, a system that applies buffering for
event and rule information might outperform others that do not cache this information.

Tests for Composite Event Detection: Composite event detection typically starts after a
(primitive or other composite) event has been detected. The event detector then checks

www.manaraa.com

6

whether the occurred event participates in a composite event. This is generally possi-
ble in two ways. In the first alternative, the ADBMS records each event occurrence,
determines whether it can participate in a composite event, and checks whether other
participating events have already occurred. The second alternative is to perform detec-
tion of composite events in a stepwise manner, e.g., by means of automata [15] or Petri
nets [11]. Of course, the different approaches may have different performance charac-
teristics and therefore need to be compared with respect to efficiency. This is accom-
plished through tests ED-06 through ED-11.

In order to stress the time needed for composite event detection, we use abstract
events in the definitions of composite events wherever possible. Using abstract events
enables more accurate measurements, since only the time for event signalling is re-
quired and primitive eventdetection is not necessary. In order to measure the entire
composite event detection process (even for stepwise detection), the tests raise the
component events directly one after the other. Thus, the measured time includes all
steps of composite event detection.

BEAST contains six tests for the detection of composite events:
1. detection of a sequence of primitive events (ED-06)
2. detection of the non-occurrence of an event within a transaction (negative event,

ED-07),
3. detection of the repeated occurrence of a primitive event (ED-08),
4. detection of a sequence of events that are in turn composite (ED-09),
5. detection of a conjunction of method events for the same receiver object (ED-10),
6. detection of a conjunction of events raised by the same transaction (ED-11).
The motivation for these tests is as follows. The first three ones test constructors of-
fered by most ADBMSs (given they support composite events at all) and/or are likely
to be required by many applications. The fourth one tests an arbitrary complex expres-
sion. The last two ones test event restrictions, which are also expected to be quite typi-
cal for ADBMS-applications (e.g., it is not sufficient to detect an arbitrary sequence of
two specific component events, but in addition specific conditions must hold).

We are interested in the time it takes to detect the events, and therefore conditions,
actions, and coupling modes are kept as simple as possible. Tests ED-06 through ED-
08 measure event detection for common composite event constructors. Test ED-09
considers one specific constructor applied to events that are in turn composite. Finally,
the last two tests measure the performance of event detection when the events of inter-
est are further restricted by event parameters.

Tests for Rule Management
The second group of tests considersrule management. It is based on the observation
that an ADBMS has to store and retrieve the definition and implementation of rules, be
it in the database, as external code linked to the code of the ADBMS, or as interpreted
code. Apparently, the time it takes to retrieve rules influences ADBMS performance.
Rule management tests measure rule retrieval time, but they do not considerrule defi-
nition andrule storage. These services are executed rather seldom, and therefore their
efficient implementation is less important.

www.manaraa.com

7

The test RM-1 raises an abstract event, evaluates afalse condition, and therefore
does not execute any action. The three parts are kept such simple in order to restrict the
measured time to the rule retrieval time as far as possible.

Tests for Rule Execution
The tests for rule execution are subdivided into two groups: one for the execution of
single rules, and one for the execution of multiple rules. The first subgroup of tests de-
termines how fast rules can be executed. The execution of a single rule consists of
loading the code for conditions and actions and of processing or interpreting these
code fragments. Again, different approaches exist for linking and processing condition
and action parts, and can be compared by means of the tests in this group.

Dif ferent strategies can also be applied for executing multiple rules all triggered by
the same event (e.g., concurrent or parallel execution). The performance characteris-
tics of these approaches are tested by the second subgroup.

For the execution of single rules, we consider one rule with different coupling
modes. The coupling mode of the condition is alwaysimmediate. The coupling
modes of the actions areimmediate, deferred, anddecoupled, respectively. The
intention of these tests is to measure the overhead needed for storing the fact that the
action still needs to be executed at the end of the transaction (deferred), as well as
the overhead necessary to start a new transaction in thedecoupled mode. In order to
stress these aspects of rule execution, we use an abstract event in order to avoid event
detection, and use a simpletrue condition and an empty action. Note that the perfor-
mance of condition evaluation and action execution is not of interest, because it is de-
termined by the “passive” part of the DBMS.

The second group of tests for rule execution considers multiple rules. The first test
(RE-04) uses four rules all triggered by the same event. Conditions and actions are
more complex than in the previous tests, in order to better be able to observe effects of
optimization of condition evaluation (ED-04) and concurrency (ED-05). All rules have
the same conditions. An ADBMS that recognizes equality of conditions (e.g., if it is
able to optimize sets of conditions) will perform better than a non-optimizing
ADBMS. All rules have the coupling modes(immediate, immediate). A total or-
dering is defined for the four rules. In addition to the rule execution, this test measures
the overhead obtained through enforcing the ordering of the rules.

The second test in this group (RE-05) again considers four rules all triggered by the
same event. However, no ordering is given. An ADBMS that is able to process condi-
tions and actions in parallel or at least concurrently will thus perform better in this test.
This test uses the same conditions and actions as test RE-04, such that both tests can be
used to observe the impact of orderings on performance.

Factors and Modes
A crucial step when designing a benchmark is the proper identification offactors [16],
i.e., parameters that influence performance measurements. Several parameters of a da-
tabase can have an impact on the performance of an ADBMS. In addition to the data-
base parameters relevant for benchmarking a passive DBMS (e.g., buffer size, page
size, number of instances stored in the database), these include:
• the number of defined events,

www.manaraa.com

8

• the fraction of composite events, and
• the number of defined rules.
The time to detect events is ideally constant, i.e., independent of the number of defined
events. However, especially for composite events it may be the case that a large num-
ber of events slows down the event detection process for single events. Furthermore,
an ADBMS needs to store and retrieve internal information on event definitions during
(or after) event detection. Apparently, a large number of event definitions can increase
the time needed to retrieve event information. It is thus interesting to investigate for
each tested ADBMS how large response times are when the number of events increas-
es. We therefore include the number of defined events as a factor.

The second factor (fraction of composite events) determines how many of the
events are composite ones. We specify this number in terms of the nesting depth of
composite events, i.e., how often composite event constructors are applied recursively.
A nesting depth of 0 means that there will not be any composite events, and a nesting
depth of 1 specifies that always two primitive events will form one composition. Gen-
erally speaking, a nesting depth ofn means thatn+1 primitive events will be used to
form n composite events.

Furthermore, the total number of rules defined by a concrete database is relevant
for performance. Recall that rule information has to be retrieved before rule execution.
While a small number of rules can be entirely loaded into main memory without prob-
lems when the ADBMS starts execution, this is no longer possible if the rulebase is
large. In the latter case, rules must be selectively loaded into main memory from sec-
ondary storage upon rule execution. It is thus an important question how efficient an
ADBMS can handle large sets of rules, and how the system behaves when the number
of rules grows larger. For example, an ADBMS that stores rules as objects can make
use of the clustering and indexing mechanisms already offered by the passive part of
the DBMS. Note also that some tests consider buffering of rule and event information.

For the three factors, we choose three possible values for a small, a medium, and a
large rulebase (see Table 1). Tests for larger rulebases are easily possible, since the val-
ues of all factors can be specified as parameters of the rulebase creation program.

Many rules and events will actually not be used by the benchmark, i.e., their execu-
tion is not measured. However, they are important in order to increase the load of the
ADBMS as well as the data/rulebase size. These “dummies” therefore yield informa-
tion whether the ADBMS is able to handle large sets of rules with a performance com-
parable to small numbers of rules.

parameter
rulebase size

small medium large

#events 50 250 500

nesting depth 2 3 4

#rules 50 250 500

Table 1. Parameter Values for Different Rulebase Sizes

www.manaraa.com

9

3.2 Benchmark Implementation

The implementation of BEAST for an ADBMS consists of the following parts (Fig. 2):
• the 007 schema and database creation programs,
• event and rule definition through the rule definition language of the ADBMS,
• specific new classes for the benchmark tests (e.g., response time measuring).
In order to run the benchmark for a concrete ADBMS, the 007 schema and the data-
base creation programs must be adapted to the data model of the ADBMS. The next
step consists of specifying and compiling the ECA-rules. Finally, the desired tests are
executed. Each test computes the CPU-time the operating system process has spent for
the test execution (due to the fact that the process is subject to operating system sched-
uling, process-specific CPU-time can be a fraction of the total elapsed time). Each test
is executed separately in order to avoid “cross-test” buffering effects.

It is not necessary to execute all tests for each ADBMS. Alternatively, a designer
can choose the tests where results are interesting, and can easily configure and instanti-
ate the benchmark for his/her needs.

4 Benchmark Application

We have run the benchmark on our home-grown ADBMS SAMOS [10, 13]. SAMOS
offers a rich collection of event definition facilities and uses Petri nets for composite
event detection [11]. We therefore are especially interested in the performance of the
Petri net approach and how well SAMOS scales for medium and large rulebases.

4.1 Benchmark Results

This section presents the results of running the benchmark on SAMOS. We also dis-
cuss differences to earlier measurements [12]. Each test has been run multiple times
for the same database/rulebase size. Arithmetic means, standard deviations, and confi-
dence intervals have been computed. Table 2 shows means and confidence intervals
for a 90% confidence level (i.e., the mean of all possible executions of a test is within
the interval with 90% confidence [16]). All results refer to CPU time in milliseconds.

active database management system

Data/Rulebase

007 schema
007

database creation
rule & event
definitions tests impl.

Figure 2. BEAST implementation

www.manaraa.com

10

The tests have been run on a SUN- SparcServer 4/690 server under SUNOS 4.1.3.
Each test has been compared with four different configurations that vary in the number
of dummy events and rules (cf. Table 1): (1) no dummy events/rules, (2) 50 dummy
events, (3) 250 dummy events, and (4) 500 dummy events. Accordingly, we use the
small (1 and 2), the medium (3) and large (4) 007 databases.

Results for Event Detection Tests
The test for primitive event detection (ED-02) shows a dependency on the rulebase
size (concretely, the total number of defined events). Ideally, we would expect that ED-

Test Parameter
Configuration (Rulebase Size)

 empty (1) small (2) medium (3) large (4)

ED-02
mean 147 253 450 840

conf. interval [137, 157] [245, 261] [434, 466] [825, 855]

ED-04

mean 685 905 1438 1634

conf. interval [665, 705] [893, 917] [1420, 1460] [1613,1655]

mean 573 740 1039 940

conf. interval [556, 590] [733, 747] [1026, 1051] [932,948]

ED-06
mean 395 500 680 1066

conf. interval [385, 405] [491, 509] [658, 702] [1055,1088]

ED-08
mean 836 1000 1529 1724

conf. interval [817, 855] [984, 1017] [1502, 1556] [1710,1738]

ED-09
mean 819 973 1478 1639

conf. interval [804, 835] [958, 989] [1437, 1519] [1617,1649]

ED-11
mean 357 469 800 1076

conf. interval [343, 372] [451, 486] [787, 813] [1053,1099]

RM-01
mean 154 256 438 179

conf. interval [147, 163] [247, 265] [424, 452] [168, 191]

RE-01
mean 157 200 562 203

conf. interval [150, 165] [194, 208] [545, 580] [193, 214]

RE-02
mean 157 205 506 197

conf. interval [151, 163] [197, 214] [492, 522] [188, 205]

RE-04
mean 325 353 660 1072

conf. interval [319, 332] [346, 360] [642, 678] [1056,1088]

Table 2. BEAST Results for SAMOS

www.manaraa.com

11

02 is independent of the rulebase size, or at least that the slope of the increase is much
smaller than in the shown results. The reason for the increase is that event objects must
be retrieved. SAMOS currently unfortunately scans the entire extension of event defi-
nitions upon event signalling in order to find appropriate event objects, and applies
string comparisons for determining these objects. In the future, we will replace the
event name as a parameter of event signalling by integer constants, and will also use
indexes (B-tree or hashing) for the retrieval of event objects.

ED-04 contains two sequences of event occurrences (ED-04a and ED-04b). It can
be observed that the second sequence requires much less time than the first one, i.e.,
there is a buffering effect of event objects. Moreover, in comparison to ED-02 much
more event objects must be retrieved, but measured times are only twice as large (for
large rulebases). We therefore conclude that the expensive actions in ED-02 (and else-
where) are not the retrievals ofsingle event objects, but querying the entireevent ex-
tension. Therefore, in ED-04, there is not only a buffering effect between the two event
signalling sequences, but also within each of them.

The tests for composite event detection also show a strong dependency on the rule-
base size. However, we have achieved dramatic improvements in comparison to previ-
ous tests [12]. The previous version of SAMOS used queries (joins) for traversing the
Petri Net. In a re-designed version of the Petri Net component, pointers have been
used, so that the joins are replaced by pointer traversals. In this way, e.g., , times for
ED-08 have decreased from 4814 to 1724, and ED-09 from 5350 to 1639 ms (large
rulebase).

Nevertheless, the absolute figures of composite event detection tests are still high,
and we would expect nearly constant behavior. Similar to the case of test ED-02, the
increase is due to the use of queries for determining information on (composite)
events, since upon primitive event signalling the entire extension of events needs to be
scanned. Once the primitive event object is found, associated composite events are
found through pointer traversals. We are therefore also interested in the impact of in-
dexing of primitive event objects on composite event detection performance.

For most tests the time required for the detection of the component events is also
interesting. The reason to measure the detection of component events is twofold:
• since component events typically do not occur directly one after the other, the com-

ponent detection time tells how much an application is slowed down whenever a
participating event occurs.

• for system designers, it is interesting to see where composite event detection
spends which fraction of the total time.

It turns out that for most constructors the detection of the second component event re-
quires much more time than the detection of the first. This is only partially due to the
fact that the second time also includes rule retrieval and rule execution. After the de-
tection of the second component event, the composite event must be signalled, and (in
SAMOS) event parameters must be determined for the composite event. These addi-
tional actions obviously are responsible for the larger required time for the second par-
ticipating event.

www.manaraa.com

12

Results for Rule Management Tests
Rule retrieval time also depends on the rulebase size (RM-01). Again, the increase is
due to the inefficient querying of the event extension. Once the event object has been
found, corresponding rule objects can be retrieved via pointer traversals, which has
only marginal effects on the response time. Similar to the tests RE-01 and RE-02, the
figures for RM-01 show a peak for the medium rulebase. Execution times become
smaller for the large rulebase. We have currently no explanation for this strange behav-
ior, but suppose that object placement, buffering, and indexing of extensions by the un-
derlying OODBMS are responsible for this behavior.

Results for Rule Execution Tests
Three tests have been performed for rule execution: test RE-03 and RE-05 have been
omitted since decoupled rules and priorities are not yet implemented in SAMOS. The
rule execution tests show that rule execution time is also dependent on the rule/data-
base size. Test RE-04 (in comparison to ED-02) shows that rule execution is quite
cheap in comparison to event detection. ED-02 performs one condition evaluation and
no action execution, while RE-04 evaluates four conditions and executes four actions,
but response time of RE-04 is approx. 25% higher than that of ED-02. Hence, retrieval
of event information from the extension of event objects isthe dominating factor in
the current implementation of SAMOS.

Discussion of Results
Although we have not yet enough comparative figures for other systems, we feel that
management of events, their retrieval, and event detection (particularly of composite
events) is not yet acceptable from a performance point of view.

We have drawn two major observations from the results. First, the storage and re-
trieval of events must be significantly improved. The facilities offered by ObjectStore
for physical storage (indexing and clustering) will be better used.

Secondly, we have observed strange effects for some tests and different rulebases
(execution times are sometimes smaller for larger rulebases). Apparently, ObjectStore
internals are responsible for this behavior, and more investigations using performance
analysis tools [e.g., 18] are necessary in order to understand these effects. On the other
hand, these tests show that response timecan be decreased, and the challenge is to en-
force such improvements deliberately. Hence, the tests show possibilities for ADBMS
tuning, which is a topic of our current work.

More figures are necessary in order to assess the performance of composite event
detection. It would be nice to have performance figures for applications that require re-
active behavior but are implemented on top of a passive DBMS. It then might (or
might not) turn out that — though time spent for composite event detection is large —
it is still smaller than the time needed to perform equivalent tasks in a passive system.
Note further that usually the total time needed to detect composite events is not spent
in one piece, but typically is required in slices distributed among multiple executions
of applications.

www.manaraa.com

13

5 Conclusion and Future Work

We have presented a benchmark for active object-oriented database management sys-
tems, and have tested the ADBMS SAMOS with this benchmark.

As designers, we are particularly interested in identifying inefficient components.
In this respect, we have seen that the most complex SAMOS component — composite
event detection — is also the most expensive one (by orders of magnitude), and that
management and retrieval of event information is not yet tolerable. These components
are the ones most worthwhile to be optimized and tuned.

In order to definitely assess the performance of SAMOS, we need comparative fig-
ures for other systems. We have measured the performance of ACOOD [1], and will
run BEAST on NAOS [7] and possibly other systems in the near future. Further sys-
tems will be tested as soon as they are available for us.

BEAST currently tests ADBMSs in single-user mode, while results may be quite
different when multi-user mode is considered as well. Especially, it is interesting
whether performance of composite event detection depends on the rulebase and the
number of concurrently active transactions. However, finding the right “transaction
mix” is a problem. We are currently investigating concurrency on composite event de-
tectors, however in an analytical way.

6 Acknowledgments

We gratefully acknowledge the discussions with Dimitris Tombros on the BEAST
benchmark and the work of Hans Fritschi on the SAMOS implementation.

7 References

1. M. Berndtsson, B. Lings:On Developing Reactive Object-Oriented Databases.
Bulletin of the TC on Data Engineering 15:1-4, 1992.

2. A.P. Buchmann: Active Object Systems. In A. Dogac, T.M. Ozsu, A. Biliris, T.
Sellis (eds): Advances in Object-Oriented Database Systems. Computer and
System Sciences Vol 130, Springer, 1994.

3. A.P. Buchmann, J. Zimmermann, J.A. Blakeley, D.L. Wells: REACH: A Tightly
Integrated Active OODBMS. Proc. 11th Intl. Conf. on Data Engineering, Taipei,
Taiwan, March 1995.

4. M.J. Carey, D.J. DeWitt, J.F. Naughton: The 007 Benchmark. Proc. ACM
SIGMOD Intl. Conf. on Management of Data, Washington, DC, May 1993.

5. R.G.G. Cattell, J. Skeen:Object Operations Benchmark. ACM ToDS 17:1, 1992.
6. S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, R.H. Badani: ECA Rule

Integration into an OODBMS: Architecture and Implementation. Proc. 11th Intl.
Conf. on Data Engineering, Taipei, Taiwan, March 1995.

7. C. Collet, T. Coupaye, T. Svensen: NAOS: Efficient and Modular Reactive
Capabilities in an Object-Oriented Database System. Proc. 20th Intl. Conf. on
Very Large Data Bases, Santiago, Chile, September 1994.

8. U. Dayal: Active Database Management Systems. Proc. 3rd Int. Conf. on Data
and Knowledge Bases, Jerusalem, 1988.

9. U. Dayal, E. Hanson, J. Widom: Active Database Systems. W. Kim (ed): Modern

www.manaraa.com

14

Database Systems. ACM Press / Addison Wesley, 1995.
10. S. Gatziu: Events in an Active Object-Oriented Database System. Doctoral

Dissertation, University of Zurich, 1994. Published by Verlag Dr. Kovac,
Hamburg, Germany, 1995.

11. S. Gatziu, K.R. Dittrich: Detecting Composite Events in an Active Database
Systems Using Petri Nets. Proc. of the 4th Intl. Workshop on Research Issues in
Data Engineering: Active Database Systems, Houston, February 1994.

12. A. Geppert, S. Gatziu, K.R. Dittrich:A Designer’s Benchmark for Active Database
Management Systems: 007 Meets the BEAST. Technical Report 94.18, Computer
Science Department, University of Zurich, November 1994.

13. A. Geppert, S. Gatziu, K.R. Dittrich:Architecture and Implementation of an
Active Object-Oriented Database Management System: the Layered Approach.
Technical Report, Institut fuer Informatik, Universitaet Zuerich, 1995.

14. J. Gray (ed): The Benchmark Handbook for Database and Transaction
Processing Systems. 2nd ed., Morgan Kaufmann Publishers, 1993.

15. N.H. Gehani, H.V. Jagadish, O. Shmueli:Composite Event Specification in Active
Databases: Model & Implementation. Proc. 18th Conf. on Very Large Data Bases
(VLDB), Vancouver, British Columbia, Canada, August 1992.

16. R. Jain: The Art of Computer Systems Performance Analysis. Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley 1991.

17. D.R. McCarthy, U. Dayal: The Architecture of an Active Data Base Management
System. Proc. ACM SIGMOD Intl. Conf. on Management of Data, Portland,
Oregon, May/June 1989.

18. Quantify User’s Guide. Pure Software Inc., 1992.
19. Sybase Inc.:SYBASE - Data Server. Berkeley, CA, 1988.

Appendix A The BEAST Rule Schema

The rule schema is given in pseudo-syntax in Table 3. The first four columns of this ta-
ble are self-explanatory. The column “CM” specifies the coupling mode of the rule,
and “P” defines priorities. For event definitions, we use the following conventions:
• properties of objects are referred to through the dot notation,
• transaction events are represented as “BOT” and “EOT”, followed by the name of

the transaction whose begin or commit has to be detected,
• the prefixes “Ev..” is used for abstract events,
• “;” is the event constructor for sequences,
• “&” is the event constructor for conjunctions,
• “|” is the event constructor for disjunctions,
• “!” is the event constructor for negative events (thewithin clause is used to ex-

press the time interval in which the event should not occur),
• times is the event constructor for repeated occurrence,
• oid that is used in the tests RE-04 and RE-05 is an event parameter representing an

instance of classDocument,
• DoNothing, searchString, replaceText, setAuthor, and setDate are

methods of 007 classes, and
• GenerateAtomicPart is the name of a transaction program.

www.manaraa.com

Te
st

E
ve

nt
C

on
di

tio
n

A
ct

io
n

C
M

P

E
D

-0
1

up
da

te
 (

A
to

m
ic

P
ar

t.d
oc

Id
)

FA
LS

E
;

i/i
—

E
D

-0
2

be
fo

re
 A

to
m

ic
P

ar
t.d

oN
ot

hi
ng

E
D

-0
3

E
O

T
 G

en
er

at
eA

to
m

ic
P

ar
t

E
D

-0
4

E
vE

D
-0

4i
 (

i=
1.

.1
0)

E
D

-0
6

E
vE

D
-0

61
 ;

E
vE

D
-0

62

FA
LS

E

;

i/i

—

E
D

-0
7

! E
vE

D
-0

7
w

ith
in

 (
 B

O
T

 G
en

er
at

eA
to

m
ic

P
ar

t ,
 E

O
T

 G
en

er
at

eA
to

m
ic

P
ar

t)

E
D

-0
8

tim
es

 (
E

vE
D

-0
8,

 1
0)

E
D

-0
9

tim
es

 (
E

vE
D

-0
91

, 3
);

(E
vE

D
-0

92
 |

E
vE

D
-0

93
);

E
vE

D
-0

94

E
D

-1
0

M
od

ul
e.

do
N

ot
hi

ng
 &

 M
od

ul
e.

se
tD

at
e:

 s
am

e_
ob

je
ct

E
D

-1
1

up
da

te
 (

A
to

m
ic

P
ar

t.x
)

&
 u

pd
at

e
(A

to
m

ic
P

ar
t.y

):
 s

am
e_

tr
an

sa
ct

io
n

R
M

-0
1

E
vR

M
-0

1

R
E

-0
1

E
vR

E
-0

1

T
R

U
E

R
E

-0
2

E
vR

E
-0

2
i/d

ef
.

R
E

-0
3

E
vR

E
-0

3
i/d

ec
.

R
E

-0
4

E
vR

E
--

04
oi

d-
>

se
ar

ch
S

tr
in

g
(“

I a
m

”)
>

 0

co
ut

 <
<

 “
do

c
co

nt
ai

ns
 w

or
d

I a
m

”

i/i

oi
d.

re
pl

ac
eT

ex
t(

“I
 a

m
”,

 “
T

hi
s

is
”)

oi
d-

>
se

tA
ut

ho
r(

)

oi
d-

>
se

tD
at

e(
)

R
E

-0
5

E
vR

E
-0

5
oi

d-
>

se
ar

ch
S

tr
in

g
(“

I a
m

”)
>

 0

co
ut

 <
<

 “
do

c
co

nt
ai

ns
 w

or
d

I a
m

”
1

oi
d.

re
pl

ac
eT

ex
t(

“I
 a

m
”,

 “
T

hi
s

is
”)

2

oi
d-

>
se

tA
ut

ho
r(

)
3

oi
d-

>
se

tD
at

e(
)

4

Ta
bl

e
3.

 T
he

 B
E

A
ST

 R
ul

e
Sc

he
m

a

15

