In T. Sellis (ed.): Proc.™ Workshop on
Rules in Databases (RIDS), Athen
Greece, September 1995. Lecture Notes in
Computer Science, Springer 1995.

1Y

A Designer’'s Benchmark for Active Database
Management Systems: 007 Meets the BEAST

Andreas Geppert, Stella Gatziu, Klaus R. Dittrich
Institut fiir Informatik, Universitat Zarich

Abstract: A benchmark for active database management systems is described. W
are particularly interested in performance tests that help to identify performant and
inefficient components. Active functionality that is relevant with respect to perfor-
mance is identified, and a series of tests is designed that measurficitecgfof

the performance-critical components. Results obtained from running the benchmark
for a concrete system are presented.

Keywords: active database systems, benchmarks, object-oriented database systems

1 Intr oduction

Active database management systems (ADBMSSs) [e.g., 2, 9] have recently found great
interest as a topic of database research, and restricted ADBMS-functionality is already
offered by some products [e.g., 19]. An ADBMS implements “reactive behavior” since

it is able to detect situations in the database and beyond and to perform corresponding

actions specified by the usépplications using reactive behavior are freed from per-

forming “polling” in order to detect interesting situations. ADBMSs release such ap-
plications from encoding (possibly redundantly) situation detection and reactions.
As for any system, ADBMSs should implement their functionaditfjciently In

fact, the evolution of ADBMSs is currently in a state where performameenants

play a crucial role, both from an application as well as from a system point of view:

« ADBMS researchers have developedatiént techniques for tasks of an ADBMS
such as composite event detection [e.8),,15], and it is thus interesting to com-
pare these approaches with respect to performance.

» Different architectural approaches have been developed and need to be compared.
For instance, the layered architecture for ADBMSs is often claimed to befiess ef
cient than an integrated ADBMS [3].

e Authors have claimed that an ADBMS outperforms polling in applications [8],
which has still to be proven by appropriate measurements.

Nevertheless, figures describing the performance of ADBMSs are not yet available.

Moreover it is so far still unclear what the relevgmrformance meases of an

ADBMS might be, and an approach how to methodically measure thdi¢ieyaty of

ADBMSs has not yet been proposed.

The objective of this paper is to describe a benchmark for (object-oriented)

ADBMSs. Such a benchmark would be useful for at least three purposes:

e potential users can run it to compare the performance of multiple ADBMSs,

1. Authors’ address: Institut fir Informatik, Universitat Zurichnitrthurerstr190, CH-8057
Zurich, Switzerland. Fax: +41-1-363 0035, Email: {geppert | gatziu | dittrich}@ifi.unizh.ch

www.manaraa.com



« ADBMS designers can run it to identify performance weaknesses of their system in
comparison to others, and
e it can be used to compare the performance of an ADBMS with that of a passive

DBMS, where the active behavior is encoded manually in the applications.

The BEASF benchmark focuses on the second point, i.e., our intention is that of de-
signers that want to assess their system. BEAST testactive functionality of
DBMSs, since appropriate benchmarks for passive DBMSs have already been devel-
oped [e.g., 4, 5, 14]. Furthermore, we concentratebpett-oriented ADBMSs, since
—although we focus on the active part— the underlying data model influences
ADBMS performance. Even passive object-oriented and relational systems are intend-
ed for diferent application domains. Thus, one type of system would be at a disadvan-
tage when BEAST is used to compare relational and object-oriented ADBMSs.

BEAST considers relevant aspects of an ADBMS that need particul&idiemrf
implementation:

e event detection,

¢ rule management, especially rule retrieval, and

e rule execution.

For each component, we define a group of tests that serve to measure its performance.
We have used these tests to measure the performance of the ADBMS SAMOS [10].
Further ADBMSs will be tested in the near future.

The remainder of this paper igganized as follows. The next section gives a short
introduction of ADBMSs, as far as necessary to comprehend the benchmark. Section 3
describes the benchmark, and section 4 presents benchmark results for SAMOS. Sec-
tion 5 concludes the paper

2 Active Database Management Systems

In order to make the benchmark better understandable, we give a short introduction of
ADBMSs. An ADBMS is a DBMS that in addition to its regular features supports the
specification and implementation of reactive behawtst ADBMSs support event-
condition-action rules (ECA-rules) for specifying reactive behaiorevent is an im-
plicitly or explicitly defined point in time and specifies when the rule has to be execut-
ed. Events can b@mple (e.g., data item updates, message sending, transaction begin
and commit, time events, abstract evér%c.) orcomposite (e.g., sequence, disjunc-
tion, negation, repeated occurrence, etc.). Current systems support retrentdif
kinds of events. The condition is either a boolean function or a databaselfjthery
condition evaluates to true (or returns a non-empty result), the action is executed. An
action is typically written in the data manipulation language (DML) of the ADBMS,
and can include the sending of messages in the case of object-oriented ADBMSs.

The execution model of an ADBMS specifies how rules are actually executed. It
determines how condition evaluations and action executions are realized in terms of
the transaction model. Thweupling mode of a rule specifies when the condition or ac-

2. BEnchmark for Active database Sgs1s

3. Abstract events (or external events) are events that are not detected by the ADBMS, but that
have to be signalled explicitly by the application or the.user

www.manaraa.com



tion parts of a rule are executed with respect to the transaction that triggered the event.
Popular coupling modes aimemediate (directly after the event occurredigferred (at

the end of the triggering transaction, but before commitjiecoupled (in a separate,
independent transaction). In this pgpee assume that the coupling modes for condi-
tions relate condition evaluation to the triggering event, and that the coupling mode for
actions relate action execution to condition evaluation. Fintdey execution model

also defines how to process multiple rules that are all triggered by the same event. One
possibility is to let the user specify (partial) orders, e.g., by meansegdriorities.

3 BEAST: A Benchmark for ADBMSs

In this section, we first identify relevant requirements and design decisions and then
describe the BEAST benchmark for ADBMSse ke the steps proposed in [16] as a
reference model of how to proceed in benchmark design.

1. Definition of goals and the tested systerfror any performance measurement
the goals must be defined beforehand. The goal of BEAST is to measure the execution
time of the services fdred by an ADBMS. W currently assume a single-user
ADBMS.

2. Definition of servicesThere is only one tested service: active behaf#or this
service, BEAST proposes a collectiontests, each of which focuses on a specific sub-
task of active behaviolhe selection of goals and services should bgifair it should
not favor specific systems. BEAST tests the features that are common to most current
ADBMSs, and does not stress special features that are available only for a few sys-
tems. The proposed tests are described in detail in section 3.1.

3. Selection of metricsThe performance measure we have chosen for BEAST is
response time. Since BEAST has no access to internal interfaces of a tested ADBMS,
we cannot precisely measure the performance of active behavior subtasks. Thus,
BEAST tests invoke active behaviavhich always performs several phases such as
rule execution. Response time is then defined as the time interval that starts directly
before event occurrences and ends directly after rule execution (i.e., when the control
returns to the applicatioh)

4. Selection of factorsFactors are parameters that influence performangpical
factors for passive DBMS are lfeif size, database size, etc. Below we identify addi-
tional factors for ADBMS performance measurement (e.g., number of defined rules).

5. Workload definition. Workload definition is a prime task in developing a
benchmark. In BEASTthe workload is defined such that basic ADBMS functionality
can be tested. Note that BEAST does not propose a typical application, since (1) the
possible application domains are rathefedént and (2) knowledge on how to use
ADBMSs for real life applications is still evolving. BEAST does not propose a typical
application and test its performance, but determines relevant functionalities and their
performance.

4. Exceptions to this definition are necessary for coupling modes other than immediate (see be-
low).

www.manaraa.com



eventoccurrence event signalling rules retrieved rules executed
t1 ) t3 ty

| | | .
| event detection | rule managemenl| rule execution|

Figure 1. Phases of Active Behavior

3.1 Benchmark Design

BEAST is based on the 007 benchmark [4]. It uses the schema of 007 as well as the
corresponding databases (i.e., programs to create and fill databases). One reason for re-
using parts of 007 is to easily obtain a schema and database. Mpfeoaagiven ob-
ject-oriented ADBMS, BEAST and 007 together allow to measure the performance of
the active and the passive parts of a system, respectively

BEAST considers three components where performance is crucial:

e event detection,

¢ rule management, and

* rule execution.

We have selected these components since they implement the three phases that com-
prise active behavior (see Fig. 1). They are thus contained in most ADBMS-architec-
tures [3, 6, 13, 17].

After an event occurs, it must lbetected, i.e., ADBMS components must realize
(or be notified) that the event has happened. At the end of the event detection phase,
the event isignalled®. The second phase (rule management) starts as soon as the event
has been signalled and determines whether (and which) rules must be executed. Inter-
nal information must be consulted that links event descriptions with rule definitions. In
the simplest case (thenmredi at e coupling mode), rule management is directly fol-
lowed by the rule execution phase (startingatlh this phase, the triggered rules are
executed. Each of the three phases is relevant with respect to performance.

Event detection is realized by the components that recognize the occurrence of spe-
cific events of interest.\ilo subtasks of event detectiorieat performance: detection
of primitive and of composite events. In general, we expect that performance is better
when the set of signalled primitive events can be small (i.e., only events that have rules
attached or that contribute in composite events are actually signalled). Second, com-
posite event detection can be realized in several ways that may Havendiperfor-
mance characteristics.

Rule management also afects the performance of an ADBMS. Rule management
refers to the storage and retrieval of rules and to the modification of the rulebase. After
a primitive event has been signalled, the ADBMS determines whether it is used in
ECA-rules and/or whether it participates in a composite event. Since information on
rules must be retrieved after the signalling of a triggering evditiecet identification
and retrieval of corresponding rules is crucial for ADBMS performance.

5. In general the precise point in time when an event occurred is not known. In BEAST tests,
however we enforce event occurrence and thus know this point in time.

www.manaraa.com



Rule execution refers to the identification of condition and action parts that have to
be executed after event occurrences as well as the execution of these parts. In particu-
lar, it is interesting how @&tiently the various coupling modes are implemented and
how eficiently multiple rules triggered by the same event can be executed.

BEAST tests each component with a series of tests. The result of running BEAST
is therefore a collection of figures instead of a single figure for each ADBMS. Note
that we cannot test the performance of each component didietyo lacking access
to internal interfaces of an ADBMS. Thus, most BEAST tests specify one or more
rules that are triggered when executing the test, i.e., the test actually causes the event
occurrence. In order to stress performance of single phases, we keep all other phases as
small as possible. For instance, a rule testing event detection performance simply de-
fines the condition to bieal se, such that condition evaluation is cheap and the action
is not executed.

We elaborate on each group of tests subsequdetiyed functionality is described,
and possible interpretations are given. The rule schema can be found in Appendix A.
Note that the tests are not always enumerated consecusively some of the ones de-
scribed in [12] have been omitted in this paper

Testsfor Event Detection

For event detection tests, BEAST focuses on the time it takes to detect an event. Both,
the detection of primitive and composite events are tested.

Tests for Primitive Event Detection: BEAST contains five tests for primitive detection:

1. detection of value modification (ED-01),

2. detection of message sending (ED-02),

3. detection of transaction events (ED-03),

4. detection of et of different primitive events (ED-04),

We illustrate the execution of tests with the test ED-02. The first operation of this test
is to record the actual time. The next operation causes the event in question.tmoccur
this case, a message is sent. Note that in this way we know the point in time of event
occurrence. The ADBMS subsequently detects the event, determines attached rules,
and executes them. It then returns control to the test program. Fihelbgst program

again records the time and computes the required CPU time.

The first three tests measure detection of single events. The corresponding rules for
all tests have a false condition and an empty action in order to restrict the measured
time to event detection, as far as possible. Coupling modes for action and condition
parts areé medi at e. Another possible kind of primitive event would toee events,
but technically no meaningful way for measuring their detection exists.

The test ED-04 runs a transaction that raises multiple abstract events and measures
the time needed for this transaction to execute. Directly afterwards, the same transac-
tion is executed again. Information about each raised event is required and thus must
be retrieved twice. Bedring of event information can decrease the time needed for the
second event occurrence and rule retrieval. Thus, a system that apgheisdpdor
event and rule information might outperform others that do not cache this information.

Tests for Composite Event Detection: Composite event detection typically starts after a
(primitive or other composite) event has been detected. The event detector then checks

www.manaraa.com



whether the occurred event participates in a composite event. This is generally possi-
ble in two ways. In the first alternative, the ADBMS records each event occurrence,
determines whether it can participate in a composite event, and checks whether other
participating events have already occurred. The second alternative is to perform detec-
tion of composite events in a stepwise managy., by means of automata [15] or Petri
nets [1]. Of course, the dérent approaches may havefeiiént performance charac-
teristics and therefore need to be compared with respedidiersfy This is accom-
plished through tests ED-06 through ED-1

In order to stress the time needed for composite event detection, we use abstract
events in the definitions of composite events wherever possible. Using abstract events
enables more accurate measurements, since only the time for event signalling is re-
quired and primitive everdetectionis not necessaryn order to measure the entire
composite event detection process (even for stepwise detection), the tests raise the
component events directly one after the otfidwus, the measured time includes all
steps of composite event detection.

BEAST contains six tests for the detection of composite events:
1. detection of a sequence of primitive events (ED-06)
detection of the non-occurrence of an event within a transaction (negative event,
ED-07),
detection of the repeated occurrence of a primitive event (ED-08),
detection of a sequence of events that are in turn composite (ED-09),
detection of a conjunction of method events for the same receiver object (ED-10),
detection of a conjunction of events raised by the same transactiorlJED-1
The motivation for these tests is as follows. The first three ones test constructors of-
fered by most ADBMSs (given they support composite events at all) and/or are likely
to be required by many applications. The fourth one tests an arbitrary complex expres-
sion. The last two ones test event restrictions, which are also expected to be quite typi-
cal for ADBMS-applications (e.qg., it is not §igfent to detect an arbitrary sequence of
two specific component events, but in addition specific conditions must hold).

We are interested in the time it takes to detect the events, and therefore conditions,
actions, and coupling modes are kept as simple as possbts.HD-06 through ED-
08 measure event detection for common composite event construastr<£0-09
considers one specific constructor applied to events that are in turn composite. Finally
the last two tests measure the performance of event detection when the events of inter-
est are further restricted by event parameters.

N

o0 s w

Testsfor Rule Management

The second group of tests considene managementt is based on the observation

that an ADBMS has to store and retrieve the definition and implementation of rules, be
it in the database, as external code linked to the code of the ADBMS, or as interpreted
code. Apparentlythe time it takes to retrieve rules influences ADBMS performance.
Rule management tests measure rule retrieval time, but they do not considisfi-

nition andrule storage These services are executed rather seldom, and therefore their
efficient implementation is less important.

www.manaraa.com



The test RM-1 raises an abstract event, evaludtesse condition, and therefore
does not execute any action. The three parts are kept such simple in order to restrict the
measured time to the rule retrieval time as far as possible.

Testsfor Rule Execution

The tests for rule execution are subdivided into two groups: one for the execution of
single rules, and one for the execution of multiple rules. The first subgroup of tests de-
termines how fast rules can be executed. The execution of a single rule consists of
loading the code for conditions and actions and of processing or interpreting these
code fragments. Again, fi#rent approaches exist for linking and processing condition
and action parts, and can be compared by means of the tests in this group.

Different strategies can also be applied for executing multiple rules all triggered by
the same event (e.g., concurrent or parallel execution). The performance characteris-
tics of these approaches are tested by the second subgroup.

For the execution of single rules, we consider one rule wiferdiit coupling
modes. The coupling mode of the condition is alwaysedi ate. The coupling
modes of the actions aremedi at e, def er r ed, anddecoupl ed, respectivelyThe
intention of these tests is to measure the overhead needed for storing the fact that the
action still needs to be executed at the end of the transadtibar( ed), as well as
the overhead necessary to start a new transaction detl@pl ed mode. In order to
stress these aspects of rule execution, we use an abstract event in order to avoid event
detection, and use a simpleue condition and an empty action. Note that the perfor-
mance of condition evaluation and action execution is not of interest, because it is de-
termined by the “passive” part of the DBMS.

The second group of tests for rule execution considers multiple rules. The first test
(RE-04) uses four rules all triggered by the same event. Conditions and actions are
more complex than in the previous tests, in order to better be able to obferieadf
optimization of condition evaluation (ED-04) and concurrency (ED-05). All rules have
the same conditions. An ADBMS that recognizes equality of conditions (e.g., if it is
able to optimize sets of conditions) will perform better than a non-optimizing
ADBMS. All rules have the coupling modésmedi ate, i nmedi at e) . A total or-
dering is defined for the four rules. In addition to the rule execution, this test measures
the overhead obtained through enforcing the ordering of the rules.

The second test in this group (RE-05) again considers four rules all triggered by the
same event. Howeveno ordering is given. An ADBMS that is able to process condi-
tions and actions in parallel or at least concurrently will thus perform better in this test.
This test uses the same conditions and actions as test RE-04, such that both tests can be
used to observe the impact of orderings on performance.

Factorsand Modes

A crucial step when designing a benchmark is the proper identificatfactafs [16],

i.e., parameters that influence performance measurements. Several parameters of a da-
tabase can have an impact on the performance of an ADBMS. In addition to the data-
base parameters relevant for benchmarking a passive DBMS (efgr, $iné, page

size, number of instances stored in the database), these include:

« the number of defined events,

www.manaraa.com



< the fraction of composite events, and

» the number of defined rules.

The time to detect events is ideally constant, i.e., independent of the number of defined
events. Howeverrspecially for composite events it may be the case thageartam-

ber of events slows down the event detection process for single events. Furthermore,
an ADBMS needs to store and retrieve internal information on event definitions during
(or after) event detection. Apparentylage number of event definitions can increase

the time needed to retrieve event information. It is thus interesting to investigate for
each tested ADBMS how Ige response times are when the number of events increas-
es. W therefore include the number of defined events as a.factor

The second factor (fraction of composite events) determines how many of the
events are composite onese\8pecify this number in terms of the nesting depth of
composite events, i.e., how often composite event constructors are applied recursively
A nesting depth of 0 means that there will not be any composite events, and a nesting
depth of 1 specifies that always two primitive events will form one composition. Gen-
erally speaking, a nesting depthrofmeans thab+1 primitive events will be used to
form n composite events.

Furthermore, the total number of rules defined by a concrete database is relevant
for performance. Recall that rule information has to be retrieved before rule execution.
While a small number of rules can be entirely loaded into main memory without prob-
lems when the ADBMS starts execution, this is no longer possible if the rulebase is
large. In the latter case, rules must be selectively loaded into main memory from sec-
ondary storage upon rule execution. It is thus an important question ficenefan
ADBMS can handle lagre sets of rules, and how the system behaves when the number
of rules grows lager. For example, an ADBMS that stores rules as objects can make
use of the clustering and indexing mechanisms alreddyedfby the passive part of
the DBMS. Note also that some tests considefebnfy of rule and event information.

For the three factors, we choose three possible values for a small, a medium, and a
large rulebase (seable 1). Ests for lager rulebases are easily possible, since the val-
ues of all factors can be specified as parameters of the rulebase creation program.

rulebase size
parameter
small medium large
#events 50 250 500
nesting depth 2 3 4
#rules 50 250 500

Table 1. Parameter Valuesfor Different Rulebase Sizes

Many rules and events will actually not be used by the benchmark, i.e., their execu-
tion is not measured. Howeyéhey are important in order to increase the load of the
ADBMS as well as the data/rulebase size. These “dummies” therefore yield informa-
tion whether the ADBMS is able to handlegarsets of rules with a performance com-
parable to small numbers of rules.

www.manaraa.com



007 rule & event
database creation definitions

Y T T

active database management system

Data/Rulebase

Figure 2. BEAST implementation

007 schema tests impl.

3.2 Benchmark Implementation

The implementation of BEAST for an ADBMS consists of the following parts (Fig. 2):
¢ the 007 schema and database creation programs,
« event and rule definition through the rule definition language of the ADBMS,
» gspecific new classes for the benchmark tests (e.g., response time measuring).
In order to run the benchmark for a concrete ADBMS, the 007 schema and the data-
base creation programs must be adapted to the data model of the ADBMS. The next
step consists of specifying and compiling the ECA-rules. Findléydesired tests are
executed. Each test computes the CPU-time the operating system process has spent for
the test execution (due to the fact that the process is subject to operating system sched-
uling, process-specific CPU-time can be a fraction of the total elapsed time). Each test
is executed separately in order to avoid “cross-testehinfy efects.

It is not necessary to execute all tests for each ADBMS. Alternatizelgsigner
can choose the tests where results are interesting, and can easily configure and instanti-
ate the benchmark for his/her needs.

4 Benchmark Application

We have run the benchmark on our home-grown ADBMS SAMOS [10, 13]. SAMOS
offers a rich collection of event definition facilities and uses Petri nets for composite
event detection [il]. We therefore are especially interested in the performance of the
Petri net approach and how well SAMOS scales for medium agel lalebases.

4.1 Benchmark Results

This section presents the results of running the benchmark on SAM®S&Isw/dis-

cuss diferences to earlier measurements [12]. Each test has been run multiple times
for the same database/rulebase size. Arithmetic means, standard deviations, and confi-
dence intervals have been computeabl@ 2 shows means and confidence intervals

for a 90% confidence level (i.e., the mean of all possible executions of a test is within
the interval with 90% confidence [16]). All results refer to CPU time in milliseconds.

www.manaraa.com



Configuration (Rulebase Size)
Test Parameter
empty (1) small (2) medium (3) large (4)
mean 147 253 450 840
ED-02 y
conf. interval| [137, 157]| [245, 261] [434, 466] [825, 855]
mean 685 905 1438 1634
ED-04 conf. interval| [665, 705]| [893,917] | [1420, 1460]| [1613,1655]
mean 573 740 1039 940
conf. interval| [556, 590]| [733, 747] | [1026, 1051]| [932,948]
ED-06 mean 395 500 680 1066
conf. interval| [385, 405]| [491, 509] [658, 702] | [1055,1088]
ED.08 mean 836 1000 1529 1724
conf. interval| [817, 855]| [984, 1017] | [1502, 1556]| [1710,1738]
ED-09 mean 819 973 1478 1639
conf. interval| [804, 835]| [958, 989] | [1437, 1519]| [1617,1649]
ED-11 mean 357 469 800 1076
conf. interval| [343, 372]| [451, 486] [787,813] | [1053,1099]
mean 154 256 438 179
RM-01
conf. interval| [147, 163]| [247, 265] [424, 452] | [168, 191]
RE.O1 mean 157 200 562 203
conf. interval| [150, 165]| [194, 208] [545, 580] [193, 214]
mean 157 205 506 197
RE-02 y
conf. interval| [151, 163]| [197, 214] [492, 522] [188, 205]
RE.04 mean 325 353 660 1072
conf. interval| [319, 332]| [346, 360] [642, 678] | [1056,1088]

Table 2. BEAST Resultsfor SAMOS

The tests have been run on a SUN- SparcServer 4/690 server under SUNOS 4.1.3.
Each test has been compared with foulediint configurations that vary in the number
of dummy events and rules (cfafile 1): (1) no dummy events/rules, (2) 50 dummy
events, (3) 250 dummy events, and (4) 500 dummy events. Accordiveglyse the
small (1 and 2), the medium (3) andglar(4) 007 databases.

Resultsfor Event Detection Tests

The test for primitive event detection (ED-02) shows a dependency on the rulebase
size (concretelythe total number of defined events). Ideailg would expect that ED-

10

www.manaraa.com



02 is independent of the rulebase size, or at least that the slope of the increase is much
smaller than in the shown results. The reason for the increase is that event objects must
be retrieved. SAMOS currently unfortunately scans the entire extension of event defi-
nitions upon event signalling in order to find appropriate event objects, and applies
string comparisons for determining these objects. In the future, we will replace the
event name as a parameter of event signalling by integer constants, and will also use
indexes (B-tree or hashing) for the retrieval of event objects.

ED-04 contains two sequences of event occurrences (ED-04a and ED-04b). It can
be observed that the second sequence requires much less time than the first one, i.e.,
there is a bdéring efect of event objects. Moreoyan comparison to ED-02 much
more event objects must be retrieved, but measured times are only twiggeg$olar
large rulebases). ¥therefore conclude that the expensive actions in ED-02 (and else-
where) are not the retrievals $hgle event objects, but querying the enéxent ex-
tension. Therefore, in ED-04, there is not only afledhg efect between the two event
signalling sequences, but also within each of them.

The tests for composite event detection also show a strong dependency on the rule-
base size. Howeveawe have achieved dramatic improvements in comparison to previ-
ous tests [12]. The previous version of SAMOS used queries (joins) for traversing the
Petri Net. In a re-designed version of the Petri Net component, pointers have been
used, so that the joins are replaced by pointer traversals. In thig\gay, times for
ED-08 have decreased from 4814 to 1724, and ED-09 from 5350 to 1639 gmas (lar
rulebase).

Nevertheless, the absolute figures of composite event detection tests are still high,
and we would expect nearly constant behavamilar to the case of test ED-02, the
increase is due to the use of queries for determining information on (composite)
events, since upon primitive event signalling the entire extension of events needs to be
scanned. Once the primitive event object is found, associated composite events are
found through pointer traversals.eVere therefore also interested in the impact of in-
dexing of primitive event objects on composite event detection performance.

For most tests the time required for the detection of the component events is also
interesting. The reason to measure the detection of component events is twofold:
¢ since component events typically do not occur directly one after the ththeom-

ponent detection time tells how much an application is slowed down whenever a

participating event occurs.

« for system designers, it is interesting to see where composite event detection
spends which fraction of the total time.
It turns out that for most constructors the detection of the second component event re-
quires much more time than the detection of the first. This is only partially due to the
fact that the second time also includes rule retrieval and rule execution. After the de-
tection of the second component event, the composite event must be signalled, and (in
SAMOS) event parameters must be determined for the composite event. These addi-
tional actions obviously are responsible for thgearequired time for the second par-
ticipating event.

11

www.manaraa.com



Resultsfor Rule Management Tests

Rule retrieval time also depends on the rulebase size (RM-01). Again, the increase is
due to the indicient querying of the event extension. Once the event object has been
found, corresponding rule objects can be retrieved via pointer traversals, which has
only maginal efects on the response time. Similar to the tests RE-01 and RE-02, the
figures for RM-01 show a peak for the medium rulebase. Execution times become
smaller for the lage rulebase. Whave currently no explanation for this strange behav-
ior, but suppose that object placementfdmirig, and indexing of extensions by the un-
derlying OODBMS are responsible for this behavior

Resultsfor Rule Execution Tests

Three tests have been performed for rule execution: test RE-03 and RE-05 have been
omitted since decoupled rules and priorities are not yet implemented in SAMOS. The
rule execution tests show that rule execution time is also dependent on the rule/data-
base size. 8st RE-04 (in comparison to ED-02) shows that rule execution is quite
cheap in comparison to event detection. ED-02 performs one condition evaluation and
no action execution, while RE-04 evaluates four conditions and executes four actions,
but response time of RE-04 is approx. 25% higher than that of ED-02. Hence, retrieval
of event information from the extension of event objecthésdominating factor in

the current implementation of SAMOS.

Discussion of Results

Although we have not yet enough comparative figures for other systems, we feel that
management of events, their retrieval, and event detection (particularly of composite
events) is not yet acceptable from a performance point of view

We have drawn two major observations from the results. First, the storage and re-
trieval of events must be significantly improved. The facilitidsrefl by ObjectStore
for physical storage (indexing and clustering) will be better used.

Secondlywe have observed strangéeets for some tests and féifent rulebases
(execution times are sometimes smaller fogdarulebases). Apparenti@®bjectStore
internals are responsible for this behayvard more investigations using performance
analysis tools [e.g., 18] are necessary in order to understand teese €n the other
hand, these tests show that response ¢tande decreased, and the challenge is to en-
force such improvements deliberatdience, the tests show possibilities for ADBMS
tuning, which is a topic of our current work.

More figures are necessary in order to assess the performance of composite event
detection. It would be nice to have performance figures for applications that require re-
active behavior but are implemented on top of a passive DBMS. It then might (or
might not) turn out that — though time spent for composite event detectiogastar
it is still smaller than the time needed to perform equivalent tasks in a passive system.
Note further that usually the total time needed to detect composite events is not spent
in one piece, but typically is required in slices distributed among multiple executions
of applications.

12

www.manaraa.com



5 Conclusion and Future Work

We have presented a benchmark for active object-oriented database management sys-
tems, and have tested the ADBMS SAMOS with this benchmark.

As designers, we are particularly interested in identifyinditgieft components.

In this respect, we have seen that the most complex SAMOS component — composite
event detection — is also the most expensive one (by orders of magnitude), and that
management and retrieval of event information is not yet tolerable. These components
are the ones most worthwhile to be optimized and tuned.

In order to definitely assess the performance of SAMOS, we need comparative fig-
ures for other systems.a\have measured the performance of ACOOD [1], and will
run BEAST on NAOS [7] and possibly other systems in the near future. Further sys-
tems will be tested as soon as they are available for us.

BEAST currently tests ADBMSs in single-user mode, while results may be quite
different when multi-user mode is considered as well. Especitllg interesting
whether performance of composite event detection depends on the rulebase and the
number of concurrently active transactions. Howgfiading the right “transaction
mix” is a problem. W& are currently investigating concurrency on composite event de-
tectors, however in an analytical way

6 Acknowledgments

We gratefully acknowledge the discussions with Dimitresnibros on the BEAST
benchmark and the work of Hans Fritschi on the SAMOS implementation.

\‘

References

1. M. Berndtsson, B. Lings:On Developing Reactive Object-Oriented Databases
Bulletin of the TC on Data Engineering 15:1-4, 1992,

2. A.P. Buchmann: Active Object Systemin A. Dogac, TM. Ozsu, A. Biliris, T
Sellis (eds): Advances in Object-Oriented Database Systems. Computer and
System SciencesoV/130, Springerl994.

3. A.P. Buchmann, J. Zimmermann, J.A. Blakel&yL. Wells; REACH: A Tghtly
Integrated Active OODBMSProc. 1" Intl. Conf. on Data Engineeringaipei,
Taiwan, March 1995.

4. M.J. Carey D.J. DeWtt, J.F Naughton: The 007 BenchmarkProc. ACM

SIGMOD Intl. Conf. on Management of Dataag#ington, DC, May 1993.

R.G.G. Cattell, J. SkeerDbject Operations BenchmarlACM ToDS 17:1, 1992.

6. S. ChakravarthyV. Krishnaprasad, Z. amizuddin, R.H. Badani: ECA Rule
Integration into an OODBMS: &hitectue and ImplementatiorProc. 11 Intl.
Conf. on Data Engineeringaipei, Taiwan, March 1995.

7. C. Collet, T Coupaye, T Svensen: NAOS: Efficient and Modular Reactive
Capabilities in an Object-Oriented Database Systé&moc. 28 Intl. Conf. on
Very Lage Data Bases, Santiago, Chile, September 1994.

8. U. Dayal: Active Database Management Syster®soc. & Int. Conf. on Data
and Knowledge Bases, Jerusalem, 1988.

9. U. Dayal, E. Hanson, J. Mbm: Active Database SystenW. Kim (ed): Modern

o

13

www.manaraa.com



Database Systems. ACM Press / AddisasMy 1995.

10. S. Gatziu: Events in an Active Object-Oriented Database Systddoctoral
Dissertation, University of Zurich, 1994. Published bgrlgg Dr Kovac,
Hambug, Germany1995.

11. S. Gatziu, K.R. Dittrich: Detecting Composite Events in an Active Database
Systems Using Petri NetBroc. of the % Intl. Workshop on Research Issues in
Data Engineering: Active Database Systems, Houston, February 1994.

12. A. Geppert, S. Gatziu, K.R. Dittriclk Designels Benchmark for Active Database
Management Systems: 007 Meets the BEA&hnical Report 94.18, Computer
Science Department, University of Zurich, November 1994.

13. A. Geppert, S. Gatziu, K.R. Dittrich:Architectue and Implementation of an
Active Object-Oriented Database Management System: the dchygypoach
Technical Report, Institut fuer Informatik, Universitaet Zuerich, 1995.

14.J. Gray (ed): The Benchmark Handbook for Database an@n¥action
Processing Systemg™ ed., Mogan Kaufmann Publishers, 1993.

15. N.H. Gehani, H.VJagadish, O. ShmuelComposite Event Specification in Active
Databases: Model & ImplementatioRroc. 18 Conf. on \éry Lage Data Bases
(VLDB), VancouverBritish Columbia, Canada, August 1992.

16. R. Jain: The Art of Computer Systems Performance Analysishriiques for
Experimental Design, Measment, Simulation, and Modelingfiley 1991.

17. D.R. McCarthy U. Dayal: The Achitectue of an Active Data Base Management
System Proc. ACM SIGMOD Intl. Conf. on Management of Data, Portland,
Oregon, May/June 1989.

18. Quantify Usels Guide Pure Software Inc., 1992.

19. Sybase Inc..SYBASE - Data ServeBerkeley CA, 1988.

Appendix A The BEAST Rule Schema

The rule schema is given in pseudo-syntaxahl& 3. The first four columns of this ta-

ble are self-explanatoryrhe column “CM” specifies the coupling mode of the rule,

and “P” defines priorities. For event definitions, we use the following conventions:

» properties of objects are referred to through the dot notation,

e transaction events are represented as “BOT” and “EOT”", followed by the name of
the transaction whose begin or commit has to be detected,

» the prefixes “Ev” is used for abstract events,

« “”is the event constructor for sequences,

* “&”is the event constructor for conjunctions,

e “|"is the event constructor for disjunctions,

< “I"js the event constructor for negative events (thehi n clause is used to ex-

press the time interval in which the event should not occur),

e times is the event constructor for repeated occurrence,

* oidthatis used in the tests RE-04 and RE-05 is an event parameter representing an
instance of clasBocunent ,

e DoNot hi ng, searchString, replaceText, set Aut hor, and set Date are
methods of 007 classes, and

e Cenerat eAt oni cPart is the name of a transaction program.

14

www.manaraa.com



S
S
o
o
S
S
c
S
E

BUBYIS3INY 1SYIdayl ‘€3iqel

- |N M|

()areqies<-pio
(10uyny1es<-pio 0<
_ dor (e ) S0-34A3 50-3d
(SISIyL, ure |,)x@80e(daipIo 5, cis eas<-pio
Jwre | pJom sureuod oop,, >> 1N0d
()areqies<-pio
()1ouInyIes<-pio 0<
: dor (e 1,) ¥0--34A3 ¥0-34
A:w_ W_F._._n: :rC.m _:vuxwmom_ ol U_O )C_.‘_Hmr_ohmmmAlc_O
Jwre | pijom surejuod Jop,, >> IN0J

I

Rl €0-34A3 €0-34
"Jop)! IndL Z0-34A3 20-3
T0-34A3 T0-3Y
TO-WYAT TO-WY 10
uondesuel) awes :(A'uedoiwoly) arepdn 3 (X' Uedoiwoly) arepdn | TT-g3
: 108[qo " swes :areIvs aINPON ¥ BuiyloNOpP BINPON 0t1-a3
In 257wy ¥60-Q3A3:(€60-A3A3T | 260-a3AT) (€ ‘T60-AIAT) SBwn 60-a3
(0T '80-@3A3) sewn 80-a3
(edoiwolyalelsuss 103  Ledolwolyalelsuss) 10g ) ulyim J0-a3
10-a3A3
290-a3A3 ! T90-a3Ag 90-a3
(0T"1=!) W0-a3A3 ¥0-a3
. UedolwolyeleIauss) 103 €0-a3
1l : IS :
BuiyioNop uedaIWOolY aiojeq 20-a3
(p1o0p*UedOIWOlY) B1epdn 10-a3

) uonoy uonIpuod Wuang 191




